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Hypersonic non-equilibrium flow over slender bodies 
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(Received 16 October 1964 and in revised form 14 January 1965) 

An analytical study is made of non-equilibrium effects on hypersonic, inviscid 
flow over slender, axisymmetric bodies. Also, two-dimensional results are 
obtained for the purpose of comparison. The rate process under consideration is 
that of molecular vibration of the gas. The exact problem is solved by successive 
approximations based on a double-expansion scheme involving two small 
parameters: one represents the fact that the bodies considered are slender; 
the other represents the fact that the vibrational internal energy is small in com- 
parison to the total enthalpy. The exact differential equations and boundary 
conditions are simplified to the hypersonic-small-disturbance-approximation 
form. The unknown quantities in this approximate problem are expanded into 
series of the small parameter, ( y -  l) /(y+ l ) ,  which is Q for a diatomic gas. In  
this formulation it is found that the classical hypersonic similitude can be ex- 
tended by slight modifications to cover the added consideration of vibrational 
non-equilibrium. The modifications introduced are the normalization of all 
lengths by the characteristic relaxation length of the gas and the addition of 
a new dimensionless parameter, which is a measure of the excitation level of the 
vibrational internal energy in the flow field. Explicit, uniformly valid solutions 
are obtained for the specific problems of flow over a slender cone and of that over 
a thin wedge. The successive approximations are carried as far as necessary to 
show the non-equilibrium effect, which differs in order of magnitude for the 
various flow quantities. One interesting feature of the solutions is the non- 
monotonic behaviour in the relaxation of the surface pressure of both the cone 
and the wedge, in contrast to intuitive expectation. The result for a 20" cone in a 
free stream of oxygen at 300" K and a Mach number of 15 is displayed and com- 
pared with the numerical solution of the exact problem using the method of 
characteristics. 

1. Introduction 
Ever since non-equilibrium effects were recognized to be important in high- 

temperature gas dynamics, considerable effort has been devoted to further 
study of various classical problems taking account of these new effects. Much 
understanding has been gained through successful analytical studies of such non- 
equilibrium flows as those across a normal shock wave, over a wavy wall, over a 
wedge, etc. Extension of these studies to the more complicated problem of flow 
over axisymmetric bodies is certainly necessary and natural. Clarke (1960) and 
Li & Wang (19657, considering only slender bodies, used a linearized approach to 
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analyse the problem. However, in most of the realistic cases the non-equilibrium 
effects in flow over slender bodies can only be induced by the presence of a strong 
shock wave, a situation which exists at high free-stream Mach number and which 
is not covered by the linearized analysis. Therefore, in the present analysis the 
non-linear problem of hypersonic non-equilibrium flow over slender bodies is 
considered. 

On the other hand, numerical analyses using the method of characteristics 
have been made on some supersonic non-equilibrium flows. Of particular interest 
to the present study is the work on flow over a cone by Sedney & Gerber (1963). 
They found that the surface pressure, instead of relaxing monotonically toward 
its equilibrium value far downstream from the leading edge, undergoes an over- 
expansion during its relaxation. It is implied in their work that this seemingly 
anomalous behaviour, not to be expected intuitively, is due to the axisymmetric 
nature of the flow over a cone. To clear up this point and to answer the general 
question of what are the differences, if any, between non-equilibrium effects 
on the flow over a two-dimensional and an axisymmetric body, an analytical 
study is definitely required. 

The present problem is formulated for a gas capable of relaxing in one vibra- 
tional mode of internal energy. Vibrational non-equilibrium has a simpler 
rate process than, say, that of dissociation and hence lends itself more readily 
to mathematical treatment. Also, i t  is the same non-equilibrium process con- 
sidered by Sedney & Gerber. Naturally, the same process has to be considered 
here in order to compare the present results with those obtained by numerical 
analysis. A systematic double-expansion scheme, developed by Cole (1 957) 
for the similar flow of a perfect gas, is employed to treat the problem. This scheme 
is built on two small parameters: one represents the fact that the bodies con- 
sidered are slender; the other represents, in the context of the present work, the 
fact that the vibrational internal energy is small compared with the total en- 
thalpy. The exact differential equations and boundary conditions are thus, as a 
first step, simplified to the first approximation of the hypersonic small-distur- 
bance theory. The higher approximations of this expansion need not concern us 
for the same reason as in the case of a perfect gas. The classical hypersonic simili- 
tude is found to be only slightly modified by the added consideration of vibra- 
tional non-equilibrium. The modifications are the normalization of all lengths by 
the characteristic relaxation length of the gas. and the addition of a new dimen- 
sionless parameter, which is a measure of the excitation level of the vibrational 
internal energy in the flow field. To solve the approximated problem, a second 
expansion is taken in terms of the small parameter (y  - l)/(y+ l), which is 
Q for a diatomic gas. This step uncouples the rate equation from the conserva- 
tion equations and amounts to a perturbation about the flow in which the 
vibrational internal energy is frozen. 

Although bodies of general shape are considered in the formulation of the prob- 
lem, solutions are carried out only for the specific cases of a slender cone and a 
thin wedge. It is found that for various flow quantities the non-equilibrium 
effects differ in order of magnitude. The successive approximations are carried 
as far as necessary to show the non-equilibrium effects. The solutions are explicit 
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and uniformly valid throughout the flow field. The non-equilibrium effect 
enters the solutions as a relaxation term which changes the value of each flow 
quantity from its frozen-flow value just behind the shock wave to its equilibrium- 
flow value far downstream. Interestingly enough, the surface pressure on both 
the cone and the wedge is found to over-expand during its relaxation. This finding 
certainly contradicts the implication of Sedney & Gerber. The result for a 20" 
cone in a free stream of oxygen at 300 "K and a Mach number of 15 is displayed 
and shown in good agreement with the numerical solution of the exact problem 
carried out by Sedney & Gerber using the method of characteristics. 

2. Exact problem 
The equations expressing conservation of mass, momentum and energy for 

steady, two-dimensional or axisymmetric flow of an inviscid, non-heat-con- 
ductiag gas are 

1 axisymmetric 
a a 0 two-dimensional 
- (rjpu) + - (rjpv) = 0, j = ax ar 

au au l a p  
u-+v-+-- = 0,  ax itr pax 

av av lap 
u-+v-+-- = 0, 
ax ar par (3) 

(4) 

where x is measured along and r perpendicular to the body axis, and u and v 
are the velocities in the x- and r-directions, respectively (figure 1); p is the pres- 
sure, p the density and h the enthalpy. If the gas is capable of being excited in its 
vibrational mode of internal energy, the equations of state are 

where T is the temperature, R the gas constant, y the ratio of frozen specific 
heats and e, denotes the vibrational energy. When the vibrational energy is not 
in equilibrium, a rate equation is needed and takes the form 

In (7) ,  e,* is the fictitious value that e, would assume if the gas were in equilibrium 
at the local temperature, and is given as a function of temperature by 

where the constant 0, is the characteristic temperature of molecular vibration. 
The relaxation time r is a very complicated function of pressure and temperature; 
however, in the present problem its value varies only slightly. The analysis as 
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well as the results may be simplified without losing the essential physical features 
of the problem if r is treated as a constant. The number of equations involved 
can be reduced by using the equations of state to eliminate two thermodynamic 
variables from the conservation and rate equations. If one chooses to work with 

21 

t 21 

FIGURE 1. The geometry of the flow. 

p ,  p and e,, as the thermodynamic variables, then (4) and ( 7 )  may be rewritten, 
by virtue of ( 5 )  , (6) and (S), as 

If the unknown shock-wave shape is described by r = G(x)  and if the free stream 
is assumed to be in equilibrium, the frozen situation behind the shock wave is 
given by the following shock conditions: 

1 cot 0, 
Mzsin28- 1 

v[x, G(x)]  = ud 13 - 
(Y + 1) M z  

where the subscript co refers to free-stream conditions, ill is the frozen Mach 
number and 0 is the shock angle (figure 1) related to the shock-wave shape through 

6’ = tan-l G’(x), (16) 

in which the prime denotes differentiation with respect to the argument. Now 
consider a given slender body described by 

r = eF(x) ,  117) 
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where E is the slenderness parameter, assumed small ( E  < 1). The tangency con- 
dition at the body surface requires that 

To define completely the shock-wave shape, the condition 

G ( 0 )  = 0, (19) 

expressing the requirement that the shock wave is attached a t  the leading edge, 
is imposed (figure 1). The five equations (l) ,  (2), (3), (9) and (10) and the boundary 
conditions (1 1) through (19) are to be solved for the unknowns, u, u, p ,  p, e, and 
G(x) ,  which give the complete flow field. 

3. Hypersonic small-disturbance approximation and similitude 
In  posing the exact problem, interest has been limited t,o consideration of 

slender bodies. Further attention will be limited to hypersonic flows, for which 
M, 9 1, while 

The exact problem can then be simplified by using the hypersonic small-distur- 
bance approximation. The variables will be expanded in series of e, as functions 
of the distorted co-ordinates. 

J!,€ = K = O(1). (20) 

- 

6 = x/(u,7); r = r/(u,74, (21) 

in which r is considered to be a constant evaluated a t  the leading edge behind the 
shock wave and u,7 represents the relaxation length of the gas. The expansions 
are the following 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

Since the error contained in the barred quantities is of the order of c2, there is 
practically no need to investigate the higher approximations. Moreover, it  will 
be seen later that the barred quantities do contain all of the necessary physical 
features of the flow field. 

Substituting equations (22) through (27) into the exact problem and neglecting 
the higher-order terms leads to the following approximate problem : 

u(x, r )  = u,p + E ~ E ,  7 )  + o(e4)1, 

u(x,  r )  = u,e[.u(E, 7) + 0 ( E 2 ) ] ,  

P b ,  r )  = P,Z& mG, r )  + 0(E2)1, 

P ( G  r )  = P,[P(E, 7) + o(~2)1, 
e,(z, r )  = .LG: ~2[c. ,(g,  7) + O ( E ~ ) ] ,  

G(x)  = uJ37e[g(E) + O(e2) ] .  
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where 

and 

The simplifications thus achieved are, besides those in the boundary conditions, 
the uncoupling of the x-momentum equation from the rest and the replacing of 
the unknown streamwise velocity by the constant free-stream velocity. Yet 
the essential non-linearity of the problem is still preserved. 

A simple similitude accompanies this approximation. The structure of equa- 
tions (28) through (39) enables one to write in functional form,? for instance, 

which is only a slight modification of the hypersonic similitude for a perfect gas 
(see, for example, Van Dyke 1954). Now the co-ordinates are non-dimensional- 
ized by the relaxation length um 7 ;  also the new parameter e,/T, is added which 
can be viewed as a measure of the excitation level of the vibrational energy in the 
flow field. Naturally, with the additional consideration of vibrational non- 
equilibrium, this similitude is more restrictive than the classical one; nevertheless, 
it  is still useful because according to it, simulation of, say, free-stream conditions 
is possible. 

4. Expansion with respect to (y -  l)/(y+ 1) 

The system (38) through (32) is too complicated to be integrated analytically, 
especially due to the coupling between the energy and the rate equation. One 
technique to overcome this difficulty in solving non-equilibrium problems is 
to apply a perturbation about the frozen-flow solution. In  this instance the 
perturbation can be accomplished by taking advantage of the fact that the 
vibrational energy is a small fraction of the total enthalpy (see Lee 1964). Mathe- 
matically, the perturbation involves the parameter y ,  which is close to unity. 

7 This form is restricted to bodies without a characteristic length. For bodies wit,h 
characteristic length L, another parameter L/u,7 will appear in the expression f(8) and 
should be included in (40). 
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In  (31) the terms contributed by the vibrational energyare proportional to (y  - l), 
and are hence small and negligible in a first approximation. 

In  the subsequent expansion scheme the first approximation is known classic- 
ally as the Newtonian solution (see Cole 1957), which has an infinitesimally thin 
shock layer. In  order to perturb the Newtonian solution, a magnified scale has to 
be used such that the details of the thin layer can prevail. As is necessary for the 
magnification, a transformation should be made which measures the transverse 
distance from the body surface and the transverse velocity from its value on the 
body surface. Let 

and 

Now consider the small parameter 6 = ( y -  l) /(y+ 1) which is equal to for a 
diatomic gas. In  terms of it the tilde quantities can be expanded. The expansions 
are made in the again distorted co-ordinates 

- 
f ;= ;; 7 =$P,  (60) 
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as 

where N and A are two parameters considered to be of order unity and defined as 

Substituting the above into ( 4 8 )  through ( 5 9 )  and collecting terms of the same 
order in S leads to the following successive approximations. 

First approximation 

and 

J " ( f ) + - -  1 aP1 = 0 ,  
P1 a7 

(;[+vl;) (E) = 0, ( 7 3 )  

In  this approximation, the conservation equations ( 6 9 )  through ( 7 2 )  are un- 
coupled from the rate equation (73 )  and are exactly the same as those of the 
first approximation in the work of Cole (1957)  for a perfect gas. In  other words, 
the vibrational non-equilibrium does not affect the flow field to a first approxima- 
tion. Rather, the classical solution of the flow quantities is used to calculate the 
new variable eel by use of the rate equation. 
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Xecond approximation 

”(” ?) 

($+vl$ ($:)+%‘I+w2a;i(lnp1)+jy av, a .2-= = 0, 

f f’ f 

(82) 

Third approximation 
As it  is intended to carry the successive approximations far enough to show the 
non-equilibrium effect on all flow variables, it  will be seen later that some of the 
equations in this approximation are necessary. 
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and 

5.  Solutions for wedge and cone 

the solutions for a wedge and a cone will now be carried out, for which 
Although the problem is formulated for slender bodies of general shape, 

F ( x )  = z; f(5) = 5; p'(5) = 1; s"(5) = 0 

and E = tan p where ,8 denotes the semi-vert,ex angle. The solution of the approxi- 
mate problems is simple and straightforward because the equations of each ap- 
proximation can be integrated one by one. The details of the integration will not 
be given here. 

Solving the first approximation for wedge and cone yields 

p1 = 1, u1 = -1 ,  p1 = (N+l)-I, (971, (9% (99) 

v1 = 0 wedge (100a) 

= -(7/5) cone7 ( l O O b )  

g ,  = ( N +  1)  5 wedge (101a) 

= + ( N +  1) 5 cone, (101 b)  

(102 a) 

(102b) 

The results show that to this approximation the pressure, density, velocities an 
shock-wave shape are not affected by the non-equilibrium effect yet and that they 
are the Newtonian solutions as known classically. The streamlines in the wedge 
case are straight lines parallel to the wedge surface and are described by 7 = const. 
The streamlines in the cone case are hyperbolas described by cq = const. The 
non-equilibrium effect is shown on the vibrational energy which, starting from 
the frozen (free-stream) value at the shock, relaxes (decays exponentially) along 
the streamlines to the equilibrium value far downstream. 
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In order to observe the non-equilibrium effect on the other variables, i t  is 
necessary to go to the higher approximations. Solving the second approximation 

yields p2 = 2 N + 1  wedge ( 1 0 3 ~ )  

= $(5N+ 1) - (T/E)~/(N+ 1) cone, (103b) 
u2 = - ( N + 1 )  wedge ( 1 0 4 4  

= - "v+ 1) - (?/&)I cone, (104 b)  

wedge ( 1 0 5 ~ )  

The expressions (105), (106) and (107) for the density, the lateral velocity and the 
shock-wave shape, respectively, consist of two parts. One is associated with 
the non-equilibrium effect and is characterized by the factor 

h([ehl(N+1) - 11-1 - [eL/N- 1]-1), 

which is the difference between the frozen-flow and the equilibrium-flow value of 
the vibrational energy. The other part represents the classical correction to the 
first approximation. For density, the non-equilibrium term increases its value 
monotonically from zero at the frozen shock-wave to a finite value far down- 
stream, and thus the density relaxes from its frozen-flow value to its equilibrium- 
flow value. For the lateral velocity, the non-equilibrium term consists of two 
factors: one represents the relaxation of velocity from the frozen shock-wave 
like that of density; the other represents the correction due to the fact that the 
true shock-wave, from which the relaxation should start, departs from the frozen 
shock-wave. Differentiating ( 107) yields 

9; = - ( N 2 f N -  1 ) - 2 ( e A \ ( N + I ) -  1 eA[N- 1 (1 - e-E) wedge (108a) 
h 
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from which one can see that the non-equilibrium effect changes monotonically 
the shock-wave slope from the larger, frozen-flow value at the leading edge to the 
smaller, equilibrium-flow value far away from the leading edge. Evidently, there 
is no non-equilibrium term in the expressions for the pressure and the axial 
velocity which are the least sensitive to the non-equilibrium effect. For the 
vibrational energy, the non-equilibrium effect has already been in evidence in 
the first approximation, so the lengthy second approximation, which gives only 
quantitative correction? will not be given here. 

Since the relaxation of pressure is of some interest, especially because of the 
previously raised question as to whether and when it is monotonic, one must 
proceed to the third approximation. Solving the equation (94) and using the 
condition (96) yields 

(109a) 

5N2+74N-3  5 11 4 
- - -  

33 

These are complicated expressions; however, restricting interest to the surface 
pressure only, one obtains 

(1  - e-6 + te-5) wedge 
h 

eh/LV+1) - 1 e h / N  - 1 

(110a,) 

p3(c ,0 )  = - ( N 2 + 3 N - 1 ) - 3  

- - 2  5N2+ 'i4N - 3 
33 

- _ -  

The non-equilibrium term again shows the change of value from zero at  the lead- 
ing edge to a finite value far downstream and thus makes the surface pressure 
relax from the frozen-flow value to the equilibrium-flow value. The relaxation, 
unlike that of density, is non-monotonic in both the wedge and cone cases. 
The surface pressure decreases to a minimum and then increases to reach the 
equilibrium-flow value far downstream. It is easy to show from (110) that the 
minimum point on the wedge is two relaxation lengths from the leading edge 
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(,t = 2.0) and that on the cone it is about three relaxation lengths from the 
leading edge (t = 2.87). 

Figure 2 shows the relaxation of the surface pressure on a 20" cone in a free 
stream of oxygen at 300°K and a Mach number of 15. The upper curve is the 
result of the present analysis and the lower curve is the result of the numerical 
solution of the exact problem carried out by Sedney & Gerber. The two curves 
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FIGURE 2. Surface-pressure distribution on a 20" cone in a free stream 
of oxygen at  300" K, M ,  = 15. 

agree, at least qualitatively. They agree especially well so far as the location of 
minimum pressure is concerned. Figure 3 compares the relaxation of the surface 
pressure on a 20" wedge with that on the 20" cone in the same free stream. It 
shows that the non-equilibrium effect on the wedge is more pronounced than on 
the cone, but otherwise the two curves are qualitatively similar. 

6. Concluding remarks 
The Newtonian or thin-shock-layer approximation is a powerful and fre- 

quently used tool in hypersonic-flow studies. In the present work it has been 
successfully employed to study the non-equilibrium effect due to molecular 
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vibration. The results show that the classical Newtonian value for the various 
flow quantities is not affected to a first approximation. These classical values can 
be used in the rate equation to calculate the non-equilibrium variable. This is 
indeed practised in some engineering calculations. One must not generalize, 
however, when other rate processes are considered. The non-equilibrium effect 
enters as a relaxation term in the second approximation for the density, the lateral 

5 10 15 20 

X I U  COT 

FIGURE 3. Surface-pressure distributions on a 20" wedge and a 20" cone in the 
same free stream. 

velocity and the shock-wave shape, and in the third approximation for the pres- 
sure and the axial velocity. The relaxation effect is largely the same in the two- 
dimensional flow over a wedge and the axisymmetric flow over a cone. 

The relaxation of the surface pressure is non-monotonic in both the flow over 
a wedge and that over a cone. This is in contrast to normal expectation of a 
monotonic relaxation derived from experience with uniformly relaxing cases. 
In  the present case, the flow on different streamlines relaxes at different tempera- 
ture, pressure and rate. It is possible that this difference in flow properties can 
be propagated to and thus have influence on the neighbouring streamlines before 
the final equilibrium state is reached. The influence should occur especially in 
cases similar to the present one in which the Mach number is high. 
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The entropy production, though not considered in the problem, can be calcu- 
lated from the present results. It can be shown that even far downstream, where 
the flow reaches the equilibrium state, the entropy production has different values 
from streamline to streamline rather than a uniform equilibrium-flow value. 

The author is indebted to Dr R. Sedney and Mr N. Gerber for furnishing the 
numerical solution. This work was supported by the Douglas Independent Re- 
search and Development Program. 
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